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T —
Magnetospheric boundary

@ Schematic diagram conveys the impression that the magnetosphere
is a well ordered and stable system.

@ The magnetosheath plasma is flowing along the magnetopause
around the magnetosphere.

@ However, contact between the flow and the magnetospheric field may
cause ripples on the boundary.
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T —
Magnetospheric boundary

@ This triggers Kelvin—Helmholtz Instability (KHI) — which occurs when
there is velocity shear in a single continuous fluid, or where there is a
velocity difference across the interface between two fluids.

Credit: Wikipedia
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Examples of KHI
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-
Own observations of KHI

Big Island

Messeling, Tirol
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-
KHI formation

@ Deformation of the boundary between two fluids modifies pressure.

@ From the Bernoulli principle, the deformation into a flowing fluid leads
to increased velocity and reduced pressure, while the expansion of
the boundary leads to reduced flow and an increased pressure.

@ The deformation leads to pressure gradient in the opposite direction.

@ Fluid from one side of the interface will be carried by the flow on the
other side of the interface leading to a rolling up of the interface.

@ Vortex formation is a typical observational signature of the KHI.

From Johnson et al., 2014
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T —
The dispersion relation for KHI

From Johnson et al., 2014
k(Pmsthsh + Pmsmesp>
Omsh + Pmsp

+ \/(p*> ([k (Vinsh — Vmsp)]2 _ (- Bnan)® + (k- Bm5p)2>

Wkh =

Omsh + Pmsp 47p*
where p* = pmshPmsp/ (Pmsh + Pmsp) is @ mean mass, k wave vector, V' is
the plasma velocity and msh/msp is magnetosheath/magnetosphere.
@ KH waves are unstable if
(k  (Vinsh — Vmsp))2 > ((k : Bmsh)2 + (k- BmSp)z) /4mp* (CGS)
@ The KHI leads to formation of a surface wave on the interface.
@ KH instability is driven by the velocity shear but can be stabilized by
the magnetic tension force and is modulated by density difference.
@ KH is generally favored at low latitudes when the IMF is
predominantly northward.
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KHI in the magnetosphere

Credit: Tanaka
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KH wave in linear stage
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Rolled-up vortices: observations by THEMIS
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Rolled-up vortices: observations by THEMIS
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Rolled-up vortices: observations by THEMIS
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Convective growth of magnetopause KH waves

@ KHI may excite surface waves

&) |
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Credit: Treumann&Baumjohann
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-
KHI growth

@ The wave period is related to the scale thickness of the boundary:

_ 2md
- 0.6V

~ 10d/Vj

where d is the scale thickness of the boundary, V; is half the solar
wind speed in the magnetosheath.

@ The waves are in frequency Pc3, Pc4, Pc5

@ For d=6400 km (1 Rg) and V{y = 200 km/s, T= 320 s — a typical Pc5
period

@ For d=1200 km (~0.2 Rg) and Vj = 400 km/s, T= 32 s — a typical Pc3
period

From Walker 1981
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T —
KH waves may excite Pc5-Pc3 geomagnetic pulsations at
the Earth’s ground
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Magnetosheath’s compressional waves

@ Compressional waves enter the magnetosphere at its nose
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Effect of boundary instabilities

@ Such waves at the boundary may trigger Field Line Resonances
(FLRY) within the magnetosphere

@ FLR can be also excited by shocks and other large-scale solar wind
discontinuities

\Q\\ Magnetopause

Resonant L-Shell

\\ Kelvin-Helmholtz

waves on boundary
Resonances at
discrete frequencies
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Credit: Kivelson&Russell oundary waves
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-
Perturbations of field and plasma

@ If the length of the field line
between the two
ionospheres is [, the
allowed wavelength along
the field direction A are

/\H = 2l/1’l,

where n is integer.

@ For the shear Alfvén wave
along the background
magnetic field is

(d}
shear Alfvén wave fast compressional wave

(b) w = vAkH = Z)A27T/)LH

Credit: Kivelson&Russell
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-
Perturbations of field and plasma

@ The allowed frequencies of these waves standing on field lines are

wr =nva/(21) =nB/ (2l \/hop)

@ Only certain resonance frequencies can be established.

@ If the field geometry is known, it is possible to infer the plasma density
by measuring the frequencies of shear Alfvén waves present in a
magnetospheric cavity bounded by the northern and southern
ionospheres.

Credit: Kivelson&Russell
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Standing oscillations in the dipole field
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Plasma mass density derived from FLR

@ The equatorial mass density is derived from FLR frequency across
2.4< L <4.5in the Northern Hemisphere at 78°-106° magnetic
longitude and centered on L=2.8 in the Southern Hemisphere at 226°
magnetic longitude, for several days in October and November 1990.

@ Stations used for this study are YOR, GML, FAR, KVI, NUR, and OUL.

@ The density is derived from the relation
1. 01 ds

wg =~ 7 | 54 vals) = B/ \/pop

Credit: Menk+99
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KHI in other space objects: High Speed Streams
Credit: M. Desai
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@ Occures between interface of streams in the compression region
@ Leads to generation of Alfvén waves
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KHI in other space objects: CME

Credit: Foullon+11 SDO AIA_1 131 3-Nov-2010 12:15:21.620 UT
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KHI in other space objects: CME
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KHI in other space objects: Aurora
Credit: Asamura+09
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KHI in other space objects: Auroral spiral

ORIGINAL RESEARCH article

Front. Astron. Space Sci., 13 October 2023 This article is part of the Research Topic
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Cluster observations: southward IMF and high latitude

@ Plasma velocity and density were fluctuating
@ Maxima of the pressure and of the magnetic field normal component
were aligned, indicating KH vortices
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Further evidence of KHI

@ We expect to observe mixed plasma crossing the KHI region

@ Entropy S ~ In(T,/n"1)
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-
Modeling of Kelvin—Helmholtz Instability
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Modeling of Kelvin—Helmholtz Instability

dndel ot COMC: LFM

Kronberg, Gorman et al., 2021
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Modeling of Kelvin—Helmholtz Instability
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-
Modeling of Kelvin—Helmholtz Instability
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Modeling of Kelvin—Helmholtz Instability
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Modeling of Kelvin—Helmholtz Instability
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Modeling of Kelvin—Helmholtz Instability
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Modeling of Kelvin—Helmholtz Instability
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-
Modeling of Kelvin—Helmholtz Instability
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Modeling of Kelvin—Helmholtz Instability
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Modeling of Kelvin—Helmholtz Instability

dondel ot COMC: LFM

Kronberg, Gorman et al., 2021
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Modeling of Kelvin—Helmholtz Instability

dndel ot COMC: LFM

Kronberg, Gorman et al., 2021
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Modeling of Kelvin—Helmholtz Instability

dndel ot COMC: LFM

Kronberg, Gorman et al., 2021
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Modeling of Kelvin—Helmholtz Instability

dndel ot COMC: LFM

Kronberg, Gorman et al., 2021

Elena Kronberg: Space Weather Lecture 6: Kelvin—Helmholtz Instability and Field Line Resonances



-
Modeling of Kelvin—Helmholtz Instability

dndel ot COMC: LFM

Kronberg, Gorman et al., 2021
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Modeling of Kelvin—Helmholtz Instability

dodel ot COMC: LFM

Kronberg, Gorman et al., 2021
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Modeling of Kelvin—Helmholtz Instability
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Modeling of Kelvin—Helmholtz Instability

dodel ot COMC: LFM

Kronberg, Gorman et al., 2021

Elena Kronberg: Space Weather Lecture 6: Kelvin—Helmholtz Instability and Field Line Resonances



-
Modeling of Kelvin—Helmholtz Instability

dodel ot COMC: LFM

Kronberg, Gorman et al., 2021
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Modeling of Kelvin—Helmholtz Instability

dondel ot COMC: LFM

Kronberg, Gorman et al., 2021
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Modeling of Kelvin—Helmholtz Instability
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Modeling of Kelvin—Helmholtz Instability

dondel ot COMC: LFM

Kronberg, Gorman et al., 2021
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Modeling of Kelvin—Helmholtz Instability

dondel ot COMC: LFM

Kronberg, Gorman et al., 2021
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Modeling of Kelvin—Helmholtz Instability

dondel ot COMC: LFM

Kronberg, Gorman et al., 2021
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Modeling of Kelvin—Helmholtz Instability

dondel ot COMC: LFM

Kronberg, Gorman et al., 2021

Elena Kronberg: Space Weather Lecture 6: Kelvin—Helmholtz Instability and Field Line Resonances



-
Modeling of Kelvin—Helmholtz Instability

dondel ot COMC: LFM

Kronberg, Gorman et al., 2021
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Modeling of Kelvin—Helmholtz Instability

dondel ot COMC: LFM

Kronberg, Gorman et al., 2021
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Modeling of Kelvin—Helmholtz Instability
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Modeling of Kelvin—Helmholtz Instability
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Modeling of Kelvin—Helmholtz Instability
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Modeling of Kelvin—Helmholtz Instability

dondel ot COMC: LFM

Kronberg, Gorman et al., 2021
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Modeling of Kelvin—Helmholtz Instability
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Modeling of Kelvin—Helmholtz Instability

dondel ot COMC: LFM

Kronberg, Gorman et al., 2021
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Modeling of Kelvin—Helmholtz Instability

dondel ot COMC: LFM
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Modeling of Kelvin—Helmholtz Instability

dondel ot COMC: LFM
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-
Mapping of the Kelvin—Helmholtz instability to the ground
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Wavelet analysis of the magnetic field fluctuations at
Cluster

@ Pc4 fluctuations are observed
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Wavelet analysis of the fluctuations at the ground (ARC)

@ Pc4 fluctuations are also observed

@ Solar wind energy is transformed by Kelvin—Helmholtz instabilities to
electromagnetic energy at the Earth’s surface.
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T —
Summary

@ Kelvin—Helmholtz Instability is a universal process observed in many
regions of space and on the ground.

@ KHI may lead to excitation of waves.
@ Waves triggered by KHI may couple with FLR in the magnetosphere.

@ FLR observed at the ground may be used to infer the space weather
characteristics in the magnetosphere, e.g., the density of the
plasmasphere.

@ KH waves can be observed at the ground
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